#### Lecture 3: New Trade Theory

#### Isabelle Méjean isabelle.mejean@polytechnique.edu http://mejean.isabelle.googlepages.com/

Master Economics and Public Policy, International Macroeconomics

October 30<sup>th</sup>, 2008

イロン 不同 とくほう イヨン

-

#### New Trade Models

- Dixit-Stiglitz model of monopolistic competition makes it possible to integrate both increasing returns to scale (IRS) and imperfect competition in a highly tractable general-equilibrium setting
- IRS generates agglomeration of activities in a homogeneous space
- IRS is incompatible with perfect competition  $\rightarrow$  Need for imperfect competition
- General equilibrium accounts for interactions between product and labor markets

#### Monopolistic competition

- Chamberlian (1933)
- Four assumptions:
  - Firms sell products of the same nature but that are imperfect substitutes  $\rightarrow$  Varieties of a differentiated good
  - Every firm produces a single variety under IRS and chooses its price
  - The number of firms is sufficiently large for each of them to be negligible with respect to the whole group
  - Free entry and exit drives profits to zero
- $\Rightarrow\,$  Each firm has some monopoly power but each producer is constrained in its price choice
- $\Rightarrow$  The resource constraint imposes a limit on the number of varieties

イロン 不同 とくほう イヨン

-

# Scale economies, Product differentiation and the Pattern of Trade (Krugman, 1980)

- "Standard" models explain trade as a way to increase aggregate surplus through specialization according to comparative advantage
  - $\Rightarrow$  Unable to explain intra-industry trade
  - $\Rightarrow\,$  No role for demand in driving international trade
- "New Trade Theory" explains international trade on differentiated varieties
- Ingredients: Increasing returns to scale, imperfect competition and international trade costs

イロン 不同 とくほう イヨン

-

## Hypotheses

- Two regions of size *L* and *L*<sup>\*</sup>, Same technology (no comparative advantages)
- Two sectors: Agriculture (homogeneous product, perfect competition, no trade costs) and Manufacturing (differentiated good, IRS, monopolistic competition, costly trade)

$$U = C_M^{\mu} C_A^{1-\mu}, \quad 0 < \mu < 1$$

 $\bullet\,$  Dixit-Stiglitz preferences over varieties of the differentiated good  $\rightarrow\,$  Composite good

$$C_M = \left(\sum_{i=1}^N c_i^{rac{\sigma-1}{\sigma}}
ight)^{rac{\sigma}{\sigma-1}}, \quad \sigma > 1$$

Note that the limiting case  $\sigma=1$  boils down to a Cobb-Douglas subutility function, while  $\sigma\to\infty$  implies that varieties are perfect substitutes

- Agricultural technology:  $Y_A = L_A$
- Manufacturing technology:  $l_i = \alpha + \beta x_i$  (Increasing returns to scale)
- Free entry

## Closed economy

• Market-clearing conditions:

$$x_i = Lc_i$$

$$L_A = LC_A$$

$$L = \sum_{i=1}^{N} (\alpha + \beta x_i) + L_A$$

• Sectoral consumptions:

$$\begin{cases} \max_{C_A, C_M} C_M^{\mu} C_A^{1-\mu} \\ s.t. \quad P_A C_A + P_M C_M \le PC \end{cases}$$

$$\Rightarrow P_M C_M = \mu P C = \mu w$$

$$P_A C_A = (1 - \mu) P C = (1 - \mu) w$$

$$P = \frac{P_A^{1 - \mu} P_M^{\mu}}{(1 - \mu)^{1 - \mu} \mu^{\mu}}$$

= nar

Krugman, 1980 The Gravity Equation

# Closed economy (2)

Optimal consumption on each variety:

$$\begin{cases} \max_{c_i} C_M = \left(\sum_{i=1}^N c_i^{\frac{\sigma-1}{\sigma}}\right)^{\frac{\sigma}{\sigma-1}} \\ s.t. \quad \sum_{i=1}^N p_i c_i \le P_M C_M \end{cases}$$
$$\Rightarrow \quad c_i = \left(\frac{p_i}{P_M}\right)^{-\sigma} C_M = \left(\frac{p_i}{P}\right)^{-\sigma} \frac{\mu P C}{P_M} = \left(\frac{p_i}{P}\right)^{-\sigma} \frac{\mu E}{P_M} \end{cases}$$
$$P_M = \left[\sum_{i=1}^N p_i^{1-\sigma}\right]^{\frac{1}{1-\sigma}}$$

- $\Rightarrow$  "Large" country in terms of aggregate demand consume more of each variety
- $\Rightarrow$  The demand for a variety that is relatively expensive is lower than the demand for cheaper varieties but consumption is still positive (consequence of the preference for diversity)
- $\Rightarrow$  A higher number of varieties reduces the demand for each variety (market-crowding effect)  $\rightarrow$  work through the price index
  - Remark: The same demand function can be obtained from a population of heterogeneous consumers buying a single variety **BAR A BAR - B** < 🗇 🕨

Closed economy (3)

• Optimal price in agriculture:

$$P_A = w = 1$$

• Optimal prices in manufacturing:

$$\begin{cases} \pi_i = p_i c_i L - w(\alpha + \beta L c_i) \\ s.t. \quad c_i = \left(\frac{p_i}{P_M}\right)^{-\sigma} \frac{w}{P_M} \end{cases}$$

 $\Rightarrow$  Mill-pricing:

$$p_i = \frac{\sigma}{\sigma - 1}\beta$$

◆□ > ◆□ > ◆ Ξ > ◆ Ξ > ・ Ξ ・ の ۹ @ >

# Closed economy (4)

• Free entry:

$$\pi_i = p_i x_i - (\alpha + \beta x_i) = 0$$
  
 $\Rightarrow \quad x_i = \frac{\alpha}{\beta} (\sigma - 1)$ 

- $\Rightarrow$  There is a unique level of sales that allows the typical firm to just break even, ie to earn a level of operating profit sufficient to cover fixed costs.
- $\Rightarrow\,$  Regardless of the total number of firms, they all have the same size
  - Full-employment:

$$L = \sum_{i=1}^{N} (\alpha + \beta x_i) + L_A$$
$$\Leftrightarrow \quad N = \frac{\mu L}{\alpha \sigma}$$

- 14

- $\Rightarrow$  Larger markets benefit from higher diversity
- ⇒ As long as the fixed cost is strictly positive, the number of firms and varieties is finite.

• Trade increases the diversity of varieties available for consumption:

$$U = \left(\sum_{i=1}^{N} c_i^{\frac{\sigma-1}{\sigma}} + \sum_{i^*=1}^{N^*} c_{i^*}^{\frac{\sigma-1}{\sigma}}\right)^{\frac{\mu\sigma}{\sigma-1}} C_A^{1-\mu}, \quad \sigma > 1$$

- $\Rightarrow$  Positive welfare effect
  - Note that this assumes that the varieties produced in the domestic and foreign markets enter symmetrically in the composite good (same elasticity of substitution)
  - Trade is perfectly free in the homogeneous good sector ⇒ Law of one price P<sub>A</sub> = P<sup>\*</sup><sub>A</sub> ⇒ Equal wages: w = w<sup>\*</sup>
  - "Iceberg" trade costs au in the manufacturing sector

# Costly trade (2)

 $\Rightarrow$  Mill-pricing and full pass-through:

$$\begin{cases} \max_{p_i, p_i^*} [p_i L c_i + p_i^* L^* c_i^* - \beta (L c_i + \tau L^* c_i^*) - \alpha] \\ s.t. \quad c_i = \left(\frac{p_i}{P_M}\right)^{-\sigma} \frac{w}{P_M} \\ c_i^* = \left(\frac{p_i^*}{P_M^*}\right)^{-\sigma} \frac{w^*}{P_M^*} \end{cases}$$

 $\Rightarrow$  Optimal prices:

$$p_{i} = \frac{\sigma}{\sigma - 1}\beta$$
$$p_{i}^{*} = \frac{\sigma}{\sigma - 1}\beta\tau = \tau p_{i}$$

• At the same mill price, the consumption of an imported variety is lower by a factor of  $\tau^{-\sigma}$  than the consumption of a domestic variety because the delivered price is higher  $\rightarrow$  explains why firms seek to set up close to their consumers

# Costly trade (3)

Price indices:

$$\frac{P_M}{P_M^*} = \left[\frac{N/N^* + \tau^{1-\sigma}}{N/N^*\tau^{1-\sigma} + 1}\right]^{\frac{1}{1-\sigma}}$$

- $\Rightarrow\,$  The relative price of manufacturing goods is a decreasing function of the relative number of firms located in the market.
  - Individual production:

$$x_{i} = c_{i}L + \tau c_{i}^{*}L^{*}$$
$$= \left(\frac{p_{i}}{P_{M}}\right)^{-\sigma} \frac{wL}{P_{M}} + \tau \left(\frac{\tau p_{i}}{P_{M}^{*}}\right)^{-\sigma} \frac{w^{*}L^{*}}{P_{M}^{*}}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三 のので

 $\Rightarrow\,$  Production is the sum of local demands, weighted by a spatial discount factor  $\phi=\tau^{1-\sigma}$ 

# Costly trade (4)

• Spatial equilibrium equalizing profits:

$$p_{i}c_{i}L + \tau p_{i}c_{i}^{*}L^{*} - w(\alpha + \beta c_{i}L + \tau \beta c_{i}^{*}L^{*}) = p_{i*}^{*}c_{i*}^{*}L^{*} + \tau p_{i*}c_{i*}L - w^{*}(\alpha + \beta c_{i*}^{*}L^{*} + \tau \beta c_{i*}L)$$

$$\Leftrightarrow s_n = \frac{s_L - \tau^{1-\sigma}(1-s_L)}{1-\tau^{1-\sigma}}$$

with 
$$s_n = \frac{N}{N+N^*}$$
 and  $s_L = \frac{L}{L+L^*}$   
 $\Rightarrow$  Home Market Effect:

$$\frac{ds_n}{ds_L} = \frac{1+\tau^{1-\sigma}}{1-\tau^{1-\sigma}} > 1$$

イロン 不同 とくほう イヨン

-

An increase in the relative size of the domestic market more than proportionally increases the relative share of firms located here.

# Costly trade (5)

- Note that when wages are endogenous as in Krugman (1980) (no agricultural sector or sector-specific labor), the relative wage is sensitive to the relative size of countries ⇒ Home Market Effect on wages: Large countries have relatively higher wages ⇒ The size differential is offset by a wage differential which explains that, in general, agglomeration is not total.
- Consequence of the HME: In a world of IRS, countries will tend to export those kinds of products for which they have relatively large domestic demand.
- Benefit of market integration as a way to increase the market potential

#### The Gravity Equation

#### Introduction

- Newton's theory of gravitation: Two bodies are attracted to each other in proportion of their mass and in inverse proportion to the square of the distance separating them
- In economics, countries or regions are bodies subject to push and pull forces the intensity of which depends on their sizes and the distances between them
- ⇒ Economic activity aggregates firms and households in a limited number of human settlements
  - Application to migrations (Ravenstein, 1885), international trade (Tinbergen, 1962), capital flows (Portes and Rey, 2005), FDI (Di Maurao, 2000), knowledge flows, etc.

#### The empirical gravity model

• Describe bilateral trade flows between two countries r and s:

$$X_{rs} = G rac{Y_r^lpha Y_s^eta}{d_{rs}^\delta}$$

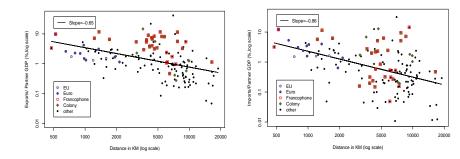
with

- G,  $\alpha,\,\beta$  and  $\delta$  parameters to be estimated,
- $Y_s$  and  $Y_r$  the countries' "mass" approximated by their GDP,
- $d_{rs}$  distance between countries, proxy for trade costs
- Log-linearizing this equation gives a testable equation:

$$\ln X_{rs} = \ln G + \alpha \ln Y_r + \beta \ln Y_s - \delta \ln d_{rs} + \varepsilon_{rs}$$

with  $\varepsilon_{\it rs}$  a residual term that controls for measurement errors

# The empirical gravity model (2)


- Highly popular model because of the quality of its empirical fit
- Disdier and Head (2008) conduct a meta-analysis over 78 articles estimating a gravity equation  $\rightarrow$  Results
  - The (negative) impact of distance on bilateral trade flows tended to decrease slightly between 1870 and 1950 but started to increase again after 1950
  - Impact of distance more pronounced in developing countries (inferior quality of their transportation infrastructure?)
  - The mean distance elasticity is 0.89  $\rightarrow$  Doubling distance typically divides trade flows by a factor close to two.
  - Strong heterogeneity across sectors (distance matters more for construction materials than for other goods, surprisingly, distance still matters for services)

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三 のので

• Distance proxies transport costs but also informational costs, time costs (impact of time difference)

#### The empirical gravity model (3)

Figure: France's exports/imports in 2000



э

< A >

#### Microfoundations

- New Trade models provide the gravity equation with some theoretical microfoundations. They also underline some limits to the standard gravity estimation.
- Estimated equation derived from a standard multi-country new trade model with:
  - R countries/regions (i = 1...R)
  - Manufacturing sector producing under IRS (CT<sub>i</sub>(q) = w<sub>i</sub>a<sub>i</sub>(q + F)), differentiated varieties that are imperfect substitutes (σ > 1)
  - Bilateral iceberg trade costs  $au_{ij} \geq 1$
  - Preferences:

$$U_{j} = \left[\sum_{i=1}^{R} \int_{n_{i}} x_{ij}(z)^{\frac{\sigma-1}{\sigma}} dz\right]^{\frac{\sigma}{\sigma-1}} = \left[\sum_{i=1}^{R} n_{i} x_{ij}^{\frac{\sigma-1}{\sigma}}\right]^{\frac{\sigma}{\sigma-1}}$$

## Microfoundations (2)

• Optimal demand for each variety:

$$x_{ij}(z) = \left(rac{p_{ij}(z)}{P_j}
ight)^{-\sigma} rac{E_j}{P_j}$$

with:

$$P_j = \left[\sum_{i=1}^R \int_{n_i} p_{ij}(z)^{1-\sigma} dz\right]^{\frac{1}{1-\sigma}} = \left[\sum_{i=1}^R n_i p_{ij}^{1-\sigma}\right]^{\frac{1}{1-\sigma}}$$

Optimal prices:

$$p_{ij}(z) = rac{\sigma}{\sigma-1} w_i a_i au_{ij} \equiv p_i au_{ij}$$

◆□ > ◆□ > ◆ Ξ > ◆ Ξ > ・ Ξ ・ の ۹ @ >

Mill-pricing

# Microfoundations (3)

• Profitability condition:

$$\frac{p_i \sum_{j=1}^R \tau_{ij} x_{ij}(z)}{\sigma} \ge w_i a_i F$$

$$\Leftrightarrow \quad \sum_{j=1}^R \tau_{ij}^{1-\sigma} P_j^{\sigma-1} E_j \ge \left(\frac{\sigma}{\sigma-1} w_i a_i\right)^{\sigma} (\sigma-1) F$$

- ⇒ maximum value of w<sub>i</sub> as a function of the sum of distance weighted "market capacities", called "market access" of country i by Redding & Venables.
  - Equilibrium number of firms:

$$Y_{i} = n_{i}p_{i}\bar{y}$$
with  $\bar{y} = (\sigma - 1)F$ 

$$\Rightarrow \quad n_{i} = \frac{Y_{i}}{p_{i}(\sigma - 1)F}$$

#### Microfoundations (4)

• Real bilateral trade flows:

$$n_i x_{ij} = n_i \left(\frac{\tau_{ij} \rho_i}{P_j}\right)^{-\sigma} \frac{E_j}{P_j} = \frac{Y_i}{(\sigma - 1)F} p_i^{-\sigma - 1} \tau_{ij}^{-\sigma} E_j P_j^{\sigma - 1}$$

• Real nominal (CIF) trade flows:

$$n_i p_{ij} x_{ij} = n_i p_i^{1-\sigma} \tau_{ij}^{1-\sigma} E_j P_j^{\sigma-1} = \frac{Y_i}{(\sigma-1)F} p_i^{-\sigma} \tau_{ij}^{1-\sigma} E_j P_j^{\sigma-1}$$

with:

$$P_j = \left[\sum_{i=1}^R n_i (p_i \tau_{ij})^{1-\sigma}\right]^{\frac{1}{1-\sigma}}$$

◆□ > ◆□ > ◆ 三 > ◆ 三 > ● の < @ >

# Microfoundations (5)

- ⇒ Gravity-like prediction with  $E_j$  and  $Y_i$  proportional to GDPs (→  $\alpha = \beta = 1$ ) and  $\tau_{ij}$  correlated with distance ( $\delta = \sigma 1$ )
  - Limit:
    - the new trade model yields a gravity equation that involves price terms → Instead of GDPs one should introduce the importer's "market capacity" and the exporter's "supply capacity"
    - the term  $P_j^{\sigma-1}$  captures general-equilibrium effects associated with third-country interactions: An increase in country *j*'s access to suppliers reduces its price index, which increases real aggregate demand

#### Empirical implementation

$$\ln \textit{Trade}_{ij} = \ln \left( \textit{n}_i \textit{p}_i^{1-\sigma} \right) + \ln \tau_{ij}^{1-\sigma} + \ln \left( \textit{E}_j \textit{P}_j^{\sigma-1} \right)$$

with  $Trade_{ij}$  value of the bilateral trade flow,  $(n_i \rho_i^{1-\sigma})$  country *i*'s "supplier capacity",  $\tau_{ij}^{1-\sigma}$  trade frictions (called "freeness of trade" by Baldwin et al.),  $(E_i P_i^{\sigma-1})$  country *j*'s "market capacity".

• Measuring trade costs:

$$\ln \tau_{ij} = \delta \ln d_{ij} - \beta cont_{ij} - \lambda lang_{ij} - \gamma TradeAg_{ij} + \dots$$

- Natural barriers (distance, mountains, access to the sea, etc.)
- Institutional barriers (Trade policy measures, environmental/phytosanitary measures, exchange rate costs, etc.)
- Information costs and cultural differences (language, historical links, etc.)

#### Empirical implementation

• The first generation of estimates neglects price effects and uses GDPs to proxy market capacity and supplier access:

$$\ln Trade_{ij} = \ln GDP_i + (1 - \sigma) \ln \tau_{ij} + \ln GDP_j$$

• Another strategy consists in estimating a fixed-effect model:

$$\ln Trade_{ij} = FE_i + (1 - \sigma) \ln \tau_{ij} + FE_j$$
  

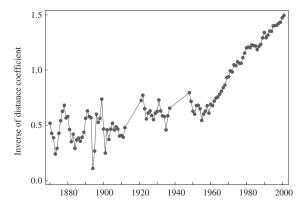
$$\Rightarrow \quad n_i p_i^{\hat{1} - \sigma} = exp(FE_i)$$
  

$$E_j \hat{P_j^{\sigma - 1}} = exp(FE_j)$$

• When "internal" trade flows are available, one can get rid of market capacities:

$$\ln rac{Trade_{ij}}{Trade_{jj}} = \ln rac{Y_i}{Y_j} + (1 - \sigma) \ln rac{ au_{ij}}{ au_{jj}} - \sigma \ln rac{p_i}{p_j}$$

with  $\frac{p_i}{p_i}$  obtained from relative wages.


# Old fashion

|                          | (1)                 | (2)                 | (3)                 | (4)                  |
|--------------------------|---------------------|---------------------|---------------------|----------------------|
| In gdp, origin           | 0.780 <sup>a</sup>  |                     | 0.783 <sup>a</sup>  | 0.775 <sup>a</sup>   |
|                          | (587.29)            |                     | (588.86)            | (571.04)             |
| In gdp, dest             | 0.672 <sup>a</sup>  |                     | 0.673 <sup>a</sup>  | 0.667 <sup>a</sup>   |
|                          | (534.03)            |                     | (534.31)            | (515.73)             |
| In distance              | -1.061 <sup>a</sup> | -1.064 <sup>a</sup> | -0.977 <sup>a</sup> | - 0.920 <sup>a</sup> |
|                          | (-304.58)           | (-304.92)           | (-260.56)           | (-234.47)            |
| In gdp cap, origin       |                     | 0.764 <sup>a</sup>  |                     |                      |
|                          |                     | (413.58)            |                     |                      |
| In gdp cap, dest         |                     | 0.626 <sup>a</sup>  |                     |                      |
|                          |                     | (340.79)            |                     |                      |
| In pop, dest             |                     | 0.713 <sup>a</sup>  |                     |                      |
|                          |                     | (441.59)            |                     |                      |
| In pop, origin           |                     | 0.803 <sup>a</sup>  |                     |                      |
|                          |                     | (469.75)            |                     |                      |
| Contiguity               |                     |                     | 0.552 <sup>a</sup>  | 0.526 <sup>a</sup>   |
|                          |                     |                     | (31.64)             | (30.20)              |
| Common language          |                     |                     | 0.367 <sup>a</sup>  | 0.343 <sup>a</sup>   |
|                          |                     |                     | (46.29)             | (43.05)              |
| Colonial relationship    |                     |                     | 1.661 <sup>a</sup>  | 1.699 <sup>a</sup>   |
|                          |                     |                     | (91.04)             | (93.24)              |
| Regional trade agreement |                     |                     |                     | 0.880 <sup>a</sup>   |
|                          |                     |                     |                     | (46.40)              |
| Currency Unions          |                     |                     |                     | 0.619 <sup>a</sup>   |
|                          |                     |                     |                     | (16.20)              |
| Gatt/WTO members         |                     |                     |                     | -0.015 <sup>a</sup>  |
|                          |                     |                     |                     | (-2.59)              |
| Constant                 | -3.911 <sup>a</sup> | -3.561 <sup>a</sup> | -4.789 <sup>a</sup> | -5.166 <sup>a</sup>  |
|                          | (-118.95)           | (-103.57)           | (-133.58)           | (-140.82)            |
| Observations             | 529,387             | 526,753             | 529,387             | 529,387              |
| R <sup>2</sup>           | 0.524               | 0.526               | 0.536               | 0.539                |

<sup>c</sup> p<0.1, <sup>b</sup> p<0.05, <sup>a</sup> p<0.01

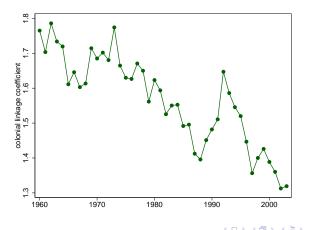
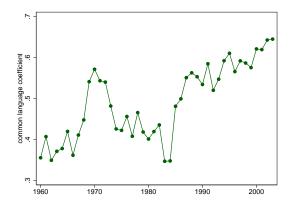

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - 釣�(♡

Figure: Impact of distance on trade, 1870-2001 (source: Combes et al., 2007)



#### Fixed effects (2)

Figure: Impact of colonial links on trade, 1960-2001 (*source: Head and Mayer*, 2007)




Isabelle Méjean Le

э.

#### Fixed effects (3)

Figure: Impact of common language on trade, 1960-2001 (*source: Head and Mayer, 2007*)



Increases over time  $\rightarrow$  More complex products?

| Isabelle Méjean | Lecture 3 |
|-----------------|-----------|
|-----------------|-----------|

#### Limits

#### • Endogeneity concerns:

- i) an unobservable shock to a country's trade flows must have an impact on its income  $\rightarrow$  the variables related to the sizes of the countries are likely to be correlated with the error term
- ii) relative prices are simultaneously determined with relative trade flows
- iii) endogeneity in trade agreements: countries choose to sign a trade agreement because they expect trade benefits
- Problem of zero trade flows that are not compatible with the New trade model ( $\rightarrow$  New new trade models)  $\rightarrow$  Tobit or Poisson econometric models