Lecture 1: Traditional Open Macro Models and Monetary Policy

Isabelle Méjean isabelle.mejean@polytechnique.edu http://mejean.isabelle.googlepages.com/

Master Economics and Public Policy, International Macroeconomics

October 16th, 2008

イロン イボン イヨン イヨン

Introduction

- Many important questions in international macroeconomics involve monetary issues
- The main departure with respect to a closed economy is that several monetary authorities play independently, managing different currencies.
- Introducing money in a model allows addressing a number of issues: determinants of seignorage, mechanics of exchange-rate systems, long-run effects of money-supply changes on prices and exchange rates

(日)

Introduction (2)

- Role of money
 - i) Medium of exchange
 - ii) Store of value
 - iii) Nominal unit of account
- Nature of money
 - Here, money is meant as currency (abstract from the banking system)
 - Money does not bear interest \Rightarrow Simplifying assumption \approx Liquidity premium

The Cagan Model

- Simple empirical model of money and inflation used to study hyperinflations (ie inflation > 50% per month, ex Zimbabwe: 100 000% in january 2008)
- Prices are fully flexible \Rightarrow Adjust to clear product, factor and asset markets \Rightarrow Long-run analysis
- Stochastic, discrete-time model
- Rational expectations

イロン 不同 とくほう イヨン

Hypotheses (2)

• Demand for real money balances depends on expected future price-level inflation:

$$m_t^d - p_t = -\eta E_t \{ p_{t+1} - p_t \}$$

Higher expected inflation lowers the demand for real balances by raising the opportunity cost of holding money

 \Rightarrow Ignore real determinants to focus on hyperinflation period \Rightarrow Simplified form of Keynes LM curves:

$$m_t^d - p_t = \phi y_t - \mu i_{t+1}, \quad \text{with} \quad 1 + i_{t+1} = (1 + r_{t+1}) \frac{P_{t+1}}{P_t}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三 のので

• Money supply m_t exogenously determined

Monetary equilibrium

In equilibrium:

$$m_t = m_t^d$$

$$\Leftrightarrow m_t - p_t = -\eta E_t \{ p_{t+1} - p_t \}$$

 \Rightarrow First-order stochastic difference equation explaining price-level dynamics in terms of the money supply

Equilibrium price level

$$p_{t} = \frac{1}{1+\eta} [m_{t} + \eta E_{t} \{p_{t+1}\}]$$

$$= \frac{1}{1+\eta} \left[\sum_{s=t}^{\infty} \left(\frac{\eta}{1+\eta}\right)^{s-t} E_{t} \{m_{s}\} \right] + \lim_{t \to \infty} \left(\frac{\eta}{1+\eta}\right)^{T} E_{t} \{p_{t+T}\}$$

$$p_{t} = \frac{1}{1+\eta} \left[\sum_{s=t}^{\infty} \left(\frac{\eta}{1+\eta}\right)^{s-t} E_{t} \{m_{s}\} \right]$$

• "no-speculative bubble" condition:

$$\lim_{T\to\infty}\left(\frac{\eta}{1+\eta}\right)^T E_t\{p_{t+T}\}=0$$

The limit is indeed zero unless the absolute value of the log price level grows exponentially at a rate of at least $(1 + \eta)/\eta$

Equilibrium price level (2)

- The price level depends on a weighted average of future expected money supplies, with weights that decline geometrically as the future unfolds
- Note that:

$$\frac{1}{1+\eta} \left[\sum_{s=t}^{\infty} \left(\frac{\eta}{1+\eta} \right)^{s-t} \right] = \frac{1}{1+\eta} \left(\frac{1}{1-\frac{\eta}{1+\eta}} \right) = 1$$

 \Rightarrow Money is fully neutral in the absence of nominal rigidities or money illusion

イロン 不同 とくほう イヨン

Constant money supply

- $m_t = \bar{m}, \forall t$
- \Rightarrow Zero expected inflation : $E_t p_{t+1} p_t = 0$,
- \Rightarrow Constant price level: $\bar{p} = \bar{m}$

◆□ > ◆□ > ◆ 三 > ◆ 三 > ● の < @ >

Constant money supply growth

- $m_t = \bar{m} + \mu t$
- \Rightarrow Constant expected inflation : $E_t p_{t+1} p_t = \mu$,
- \Rightarrow Constant price level growth:

$$p_t = \frac{1}{1+\eta} \sum_{s=t}^{\infty} \left(\frac{\eta}{1+\eta}\right)^{s-t} [m_t + \mu(s-t)]$$
$$= m_t + \frac{\mu}{1+\eta} \eta (1+\eta)$$
$$p_t = m_t + \mu \eta$$

Autoregressive money supply

•
$$m_t = \rho m_{t-1} + \varepsilon_t$$
, $0 \le \rho \le 1$, $E_t \{\varepsilon_{t+1}\} = 0$

• Price level:

$$p_t = \frac{m_t}{1+\eta} \sum_{s=t}^{\infty} \left(\frac{\eta\rho}{1+\eta}\right)^{s-t} = \frac{m_t}{1+\eta-\eta\rho}$$

In the limiting case $\rho = 1$ in which money shocks are expected to be permanent, the solution reduces to $p_t = m_t$.

Announced rise in money supply

•
$$m_t = \bar{m}, \forall t < T$$

 $m_t = \bar{m}', \forall t \ge T$

• Price level:

$$p_t = \begin{cases} \bar{m} + \left(\frac{\eta}{1+\eta}\right)^{T-t} (\bar{m}' - \bar{m}), & t < T\\ \bar{m'}, & t \ge T \end{cases}$$

• The supply shock is integrated in the effective price level as long as it is announced by the government.

イロン 不同 とくほう イヨン

Announced rise in money supply (2)

• Real revenues a government acquires by using newly issued money to buy goods and nonmoney assets:

$$Seignorage = \frac{M_t - M_{t-1}}{P_t} \equiv \frac{M_t - M_{t-1}}{M_t} \cdot \frac{M_t}{P_t}$$

- ⇒ If higher money growth raises expected inflation, the demand for real balances may fall, which exerts a negative influence on seignorage revenues ⇒ Marginal revenue from money growth can be negative ⇒ Limit to seignorage.
- \Rightarrow Optimal rate of inflation defined by:

$$\begin{cases} Max_{\mu}\frac{M_{t}-M_{t-1}}{M_{t}} \cdot \frac{M_{t}}{P_{t}}\\ s.c. \quad \frac{M_{t}}{P_{t}} = \left(E_{t}\frac{P_{t+1}}{P_{t}}\right)^{-\eta}\\ with \quad \mu = \frac{M_{t}-M_{t-1}}{M_{t}} \end{cases}$$

・ロト ・同ト ・ヨト ・ヨト

Optimal Seignorage under Constant Money Growth

•
$$\frac{M_t}{M_{t-1}} = \frac{P_t}{P_{t-1}} = 1 + \mu$$

• The optimal growth rate of money supply is then:

$$\mu^* = \frac{1}{\eta}$$

• Inverse function of the semielasticity of real balances with respect to inflation

イロン 不同 とくほう イヨン

How important is seignorage ?

Table: Average 1990-94 seignorage revenues in industrialized countries

Country	% Government spending	% GDP
Australia	0.95	0.31
Canada	0.84	0.09
France	-0.83	-0.23
Germany	2.89	0.56
Italy	3.11	0.32
New Zealand	0.04	0.01
Sweden	3.22	1.52
United States	2.19	0.44

Source: Obstfeld & Rogoff from IMF-IFS data

- ⇒ How can we explain periods of hyperinflation, in which governments obviously let money growth exceed the optimal rate? Backward-looking expectations ?
- ⇒ Credibility issues : On date 0, the government announces that it will stick to the revenue-maximizing rate of money growth → If agents believe it, they hold real balances $M/P = [(1 + \eta)/\eta]^{-\eta} \rightarrow$ On date 1, the government has an incentive to cheat and choose a higher money growth rate → If governments lack credit, agents will anticipate the government's temptation to cheat.

イロン 不同 とくほう イヨン

Open-economy extension Obstfeld & Rogoff

◆□ > ◆□ > ◆ 三 > ◆ 三 > ● の < @ >

Hypotheses of the model

- Small open economy
- Exogenous output
- Money demand defined by:

$$m_t - p_t = -\eta i_{t+1} + \phi y_t$$

• Flexible prices and PPP:

$$p_t = e_t + p_t^*$$

with e_t the (log of) nominal exchange rate (home currency per unit of foreign currency) and p_t^* the world foreign-currency price

(日)

Hypotheses of the model (2)

• Uncovered interest parity:

$$1 + i_{t+1} = (1 + i_{t+1}^*) E_t \left\{ \frac{\mathcal{E}_{t+1}}{\mathcal{E}_t} \right\}$$

$$\Leftrightarrow i_{t+1} = i_{t+1}^* + E_t e_{t+1} - e_t$$

- Simple arbitrage argument under perfect foresight and no exchange-rate risk premium
- Note that the log UIP relation is only an approximation since, by the Jensen's inequality, $\ln E_t \{\mathcal{E}_{t+1}\} > E_t \{\ln \mathcal{E}_{t+1}\}$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三 のので

Exchange-rate dynamics

• Incorporating the PPP and the IUP conditions into the money demand gives:

$$m_t - p_t^* - e_t = -\eta i_{t+1}^* - \eta (E_t \{e_{t+1}\} - e_t) + \phi y_t$$

$$\Leftrightarrow \quad m_t - \phi y_t + \eta i_{t+1}^* - p_t^* - e_t = -\eta (E_t \{e_{t+1}\} - e_t)$$

• Solving for *e*^{*t*} implies:

$$e_{t} = \frac{1}{1+\eta} \sum_{s=t}^{\infty} \left(\frac{\eta}{1+\eta}\right)^{s-t} E_{t} \{m_{s} - \phi y_{s} + \eta i_{s+1}^{*} - p_{s}^{*}\}$$

◆□ > ◆□ > ◆ 三 > ◆ 三 > ● の < @ >

Exchange-rate dynamics (2)

- \Rightarrow Describes the behaviour of nominal exchange rates as a function of expectations of future variables (\approx asset pricing equations).
 - Nominal exchange-rate depreciation if:
 - the path of the home money supply raises, thus increasing the domestic price level and the exchange rate (through PPP)
 - the real domestic income goes down, thus contracting money demand which exerts a negative pressure on the domestic price level

- the foreign interest rate increases
- the foreign price level drops
- $\bullet\,$ Note that this equation relies on a PPP assumption $\Rightarrow\,$ Long-run Model

Ex 2: Open-economy extension Ex 3: The Mundell-Fleming-Dornbusch model

Autoregressive money growth

•
$$m_t - m_{t-1} = \rho(m_{t-1} - m_{t-2}) + \varepsilon_t$$
 where ε iid, $E_{t-1}{\varepsilon_t} = 0$

• Expected rate of exchange rate depreciation:

$$E_t\{e_{t+1}\} - e_t = \frac{1}{1+\eta} \sum_{s=t}^{\infty} \left(\frac{\eta}{1+\eta}\right)^{s-t} E_t\{m_{s+1} - m_s\}$$

Exchange rate level:

$$e_t = m_t + \frac{\eta}{1+\eta} \sum_{s=t}^{\infty} \left(\frac{\eta}{1+\eta}\right)^{s-t} E_t \{m_{s+1} - m_s\}$$
$$= m_t + \frac{\eta\rho}{1+\eta-\eta\rho} (m_t - m_{t-1})$$

 \Rightarrow Impact of an unanticipated shock to m_t : direct exchange rate increase (raises the current nominal money supply) + when $\rho > 0$, increases expectations of future money growth, thereby pushing the exchange rate even higher. イロン 不良 とくほう 不良 とうほう

Exchange rate fixing

- Fixed exchange rate: $e_t = \bar{e}$ and $\eta i^* \phi y p^* = 0$
- \Rightarrow Fixed money supply: $m_t = \bar{m} = \bar{e}$
 - Fixed exchange rate: $e_t = \bar{e}$ and $\eta i^* \phi y p^* \neq 0$
- $\Rightarrow\,$ Money supply endogenous, Adjustment to market-driven fluctuations in i^*
 - Future fixing at some future date T: et = ē, ∀t ≥ T In period T − 1:

$$m_{T-1} - \phi y_{T-1} + \eta i_T^* - p_{T-1}^* - e_{T-1} = -\eta (E_{T-1}e_T - e_{T-1}) = 0$$

$$i_T = i_T^* + E_{T-1}e_T - e_{T-1} = i_T^*$$

⇒ i adjusts to satisfy the UIP relation. The monetary equilibrium implies that m also adjusts, whatever the exchange rate level the private sector expects ⇒ The announcement is not a well-adapted solution for the exchange rate market to converge towards an "equilibrium" value.